Unidad de disco duro
Unidad de disco duro
Unidad de disco rígido |

Partes de la unidad de disco duro. |
Conectado a:
|
Fabricantes comunes:
|
En
informática, la
unidad de disco duro o
unidad de disco rígido (en inglés:
Hard Disk Drive,
HDD) es el
dispositivo de almacenamiento de datos que emplea un sistema de
grabación magnética para almacenar
datos digitales. Se compone de uno o más
platos o discos rígidos, unidos por un mismo
eje
que gira a gran velocidad dentro de una caja metálica sellada. Sobre
cada plato, y en cada una de sus caras, se sitúa un cabezal de
lectura/escritura que flota sobre una delgada lámina de aire generada
por la rotación de los discos. Es
memoria no volátil.
El primer disco duro fue inventado por
IBM
en 1956. A lo largo de los años, los discos duros han disminuido su
precio al mismo tiempo que han multiplicado su capacidad, siendo la
principal opción de
almacenamiento secundario para
PC desde su aparición en los años 1960.
1
Los discos duros han mantenido su posición dominante gracias a los
constantes incrementos en la densidad de grabación, que se ha mantenido a
la par de las necesidades de almacenamiento secundario.
1
Los tamaños también han variado mucho, desde los
primeros discos IBM hasta los formatos estandarizados actualmente: 3,5
" los modelos para
PC y
servidores, 2,5 " los modelos para dispositivos portátiles. Todos se comunican con la
computadora a través del
controlador de disco, empleando una
interfaz estandarizado. Los más comunes hasta los años 2000 han sido
IDE (también llamado ATA o PATA),
SCSI (generalmente usado en
servidores y
estaciones de trabajo). Desde el 2000 en adelante ha ido masificándose el uso de los
Serial ATA. Existe además
FC (empleado exclusivamente en servidores).
Para poder utilizar un disco duro, un
sistema operativo debe aplicar un
formato de bajo nivel que defina una o más
particiones. La operación de formateo requiere el uso de una fracción del espacio disponible en el disco, que dependerá del
formato empleado. Además, los fabricantes de discos duros,
unidades de estado sólido y
tarjetas flash miden la capacidad de los mismos usando
prefijos SI, que emplean múltiplos de potencias de 1000 según la normativa IEC y
IEEE, en lugar de los
prefijos binarios, que emplean múltiplos de potencias de 1024, y son los usados por
sistemas operativos de
Microsoft.
Esto provoca que en algunos sistemas operativos sea representado como
múltiplos 1024 o como 1000, y por tanto existan confusiones, por ejemplo
un disco duro de 500
GB, en algunos sistemas operativos será representado como 465
GiB (es decir
gibibytes; 1 GiB = 1024
MiB) y en otros como 500 GB.
Historia
Antiguo disco duro de
IBM (modelo 62PC, «Piccolo»), de 64,5
MB, fabricado en 1979.
Al principio los discos duros eran extraíbles, sin embargo, hoy en
día típicamente vienen todos sellados (a excepción de un hueco de
ventilación para filtrar e igualar la presión del aire).
El primer disco duro, aparecido en
1956, fue el
Ramac I, presentado con la computadora
IBM 350: pesaba una tonelada y su capacidad era de 5
MB. Más grande que una nevera actual, este disco duro trabajaba todavía con
válvulas de vacío y requería una consola separada para su manejo.
Su gran mérito consistía en el que el tiempo requerido para el acceso
era relativamente constante entre algunas posiciones de memoria, a
diferencia de las cintas magnéticas, donde para encontrar una
información dada, era necesario enrollar y desenrollar los carretes
hasta encontrar el dato buscado, teniendo muy diferentes tiempos de
acceso para cada posición.
La tecnología inicial aplicada a los discos duros era relativamente
simple. Consistía en recubrir con material magnético un disco de metal
que era formateado en pistas concéntricas, que luego eran divididas en
sectores. El cabezal magnético codificaba información al magnetizar
diminutas secciones del disco duro, empleando un código binario de
«ceros» y «unos». Los bits o dígitos binarios así grabados pueden
permanecer intactos durante años. Originalmente, cada bit tenía una
disposición horizontal en la superficie magnética del disco, pero luego
se descubrió cómo registrar la información de una manera más compacta.
El mérito del
francés Albert Fert y al
alemán Peter Grünberg (ambos
premio Nobel de
Física por sus contribuciones en el campo del almacenamiento magnético) fue el descubrimiento del fenómeno conocido como
magnetorresistencia gigante,
que permitió construir cabezales de lectura y grabación más sensibles, y
compactar más los bits en la superficie del disco duro. De estos
descubrimientos, realizados en forma independiente por estos
investigadores, se desprendió un crecimiento espectacular en la
capacidad de almacenamiento en los discos duros, que se elevó un 60 %
anual en la
década de 1990.
En
1992,
los discos duros de 3,5 pulgadas alojaban 250 MB, mientras que 10 años
después habían superado 40 GB (40 000 MB). En la actualidad, ya contamos
en el uso cotidiano con discos duros de más de 5
TB, esto es, 5000 GB (5 000 000 MB).
En
2001 fue lanzado el
iPod,
que empleaba un disco duro que ofrecía una capacidad alta para la
época. Junto a la simplicidad, calidad y elegancia del dispositivo, este
fue un factor clave para su éxito.
En
2005 los primeros
teléfonos móviles
que incluían discos duros fueron presentados por Samsung y Nokia,
aunque no tuvieron mucho éxito ya que las memorias flash los acabaron
desplazando, debido al aumento de capacidad, mayor resistencia y menor
consumo de energía.
Estructura lógica
Dentro del disco se encuentran:
Estructura física
Componentes de una unidad de disco duro. De izquierda a derecha, fila superior: tapa, carcasa,
plato,
eje; fila inferior: espuma aislante,
circuito impreso de control, cabezal de lectura/escritura, actuador e imán, tornillos.
Dentro de la unidad de disco duro hay uno o varios
discos (de aluminio o cristal) concéntricos llamados
platos (normalmente entre 2 y 4, aunque pueden ser hasta 6 o 7 según el modelo), y que giran todos a la vez sobre el mismo
eje, al que están unidos. El
cabezal
(dispositivo de lectura y escritura) está formado por un conjunto de
brazos paralelos a los platos, alineados verticalmente y que también se
desplazan de forma simultánea, en cuya punta están las cabezas de
lectura/escritura. Por norma general hay una cabeza de lectura/escritura
para cada superficie de cada plato. Los cabezales pueden moverse hacia
el interior o el exterior de los platos, lo cual combinado con la
rotación de los mismos permite que los cabezales puedan alcanzar
cualquier posición de la superficie de los platos.
Cada plato posee dos “ojos”, y es necesaria una cabeza de lectura/escritura
para cada cara. Si se observa el esquema
Cilindro-Cabeza-Sector,
a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada
uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara
superior del plato, y otra para leer la cara inferior. Por tanto, hay 8
cabezas para leer 4 platos, aunque por cuestiones comerciales, no
siempre se usan todas las caras de los discos y existen discos duros con
un número impar de cabezas, o con cabezas deshabilitadas. Las cabezas
de lectura/escritura nunca tocan el disco, sino que pasan muy cerca
(hasta a 3
nanómetros),
debido a una finísima película de aire que se forma entre éstas y los
platos cuando éstos giran (algunos discos incluyen un sistema que impide
que los cabezales pasen por encima de los platos hasta que alcancen una
velocidad de giro que garantice la formación de esta película). Si
alguna de las cabezas llega a tocar una superficie de un plato, causaría
muchos daños en él, rayándolo gravemente, debido a lo rápido que giran
los platos (uno de 7.200
revoluciones por minuto se mueve a 129
km/h en el borde de un disco de 3,5 pulgadas).
Direccionamiento
Cilindro, Cabeza y Sector.
Estructura de disco que muestra:
(A) una pista (roja),
(B) un sector geométrico (azul),
(C) un
sector de una pista (magenta),
(D) y un grupo de sectores o
clúster (verde).
Hay varios conceptos para referirse a zonas del disco:
- Plato: cada uno de los discos que hay dentro de la unidad de disco duro.
- Cara: cada uno de los dos lados de un plato.
- Cabezal: número de cabeza o cabezal por cada cara.
- Pista: una circunferencia dentro de una cara; la pista cero (0) está en el borde exterior.
- Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
- Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque la IDEMA ha creado un comité que impulsa llevarlo a 4 KiB.
Antiguamente el número de sectores por pista era fijo, lo cual
desaprovechaba el espacio significativamente, ya que en las pistas
exteriores pueden almacenarse más sectores que en las interiores. Así,
apareció la tecnología grabación de bits por zonas (Zone Bit Recording, ZBR)
que aumenta el número de sectores en las pistas exteriores, y utiliza
más eficientemente el disco duro. Así las pistas se agrupan en zonas de
pistas de igual cantidad de sectores. Cuanto más lejos del centro de
cada plato se encuentra una zona, ésta contiene una mayor cantidad de
sectores en sus pistas. Además mediante ZBR, cuando se leen sectores de
cilindros más externos la tasa de transferencia de bits por segundo es
mayor; por tener la misma velocidad angular que cilindros internos pero
mayor cantidad de sectores.2
- Sector geométrico: son los sectores contiguos pero de pistas diferentes.
- Clúster: es un conjunto de sectores.
El primer sistema de direccionamiento que se usó fue el
cilindro-cabeza-sector (
Cylinder-Head-Sector,
CHS), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo:
direccionamiento de bloques lógicos (
Logical block addressing,
LBA), que consiste en dividir el disco entero en
sectores y asignar a cada uno un único número. Éste es el que actualmente se usa.
Factor de Forma
Seis unidades de disco duro con carcasas abiertas mostrando platos y
cabezales; 8, 5¼, 3½, 2½, 1⅛ y 1 pulgadas de diámetro de los discos que
representan.
El más temprano "
factor de forma" de los discos duros, heredó
sus dimensiones de las disqueteras. Pueden ser montados en los mismos
chasis y así los discos duros con factor de forma, pasaron a llamarse
coloquialmente tipos FDD "
floppy-disk drives" (en inglés).
La compatibilidad del "factor de forma" continua siendo de 3½
pulgadas (8,89 cm) incluso después de haber sacado otros tipos de
disquetes con unas dimensiones más pequeñas.
- 8 pulgadas: 241,3×117,5×362 mm (9,5×4,624×14,25 pulgadas).
En 1979, Shugart Associates
sacó el primer factor de forma compatible con los disco duros, SA1000,
teniendo las mismas dimensiones y siendo compatible con la interfaz de 8
pulgadas de las disqueteras. Había dos versiones disponibles, la de la
misma altura y la de la mitad (58,7 mm).
- 5,25 pulgadas: 146,1×41,4×203 mm (5,75×1,63×8 pulgadas). Este
factor de forma es el primero usado por los discos duros de Seagate en
1980 con el mismo tamaño y altura máxima de los FDD de 5¼ pulgadas, por
ejemplo: 82,5 mm máximo.
Éste es dos veces tan alto como el factor de 8 pulgadas, que comúnmente
se usa hoy; por ejemplo: 41,4 mm (1,64 pulgadas). La mayoría de los
modelos de unidades ópticas (DVD/CD)
de 120 mm usan el tamaño del factor de forma de media altura de 5¼,
pero también para discos duros. El modelo Quantum Bigfoot es el último
que se usó a finales de los 90'.
- 3,5 pulgadas: 101,6×25,4×146 mm (4×1×5.75 pulgadas).
Este factor de forma es el primero usado por los discos duros de Rodine
que tienen el mismo tamaño que las disqueteras de 3½, 41,4 mm de altura.
Hoy ha sido en gran parte remplazado por la línea "slim" de 25,4 mm (1
pulgada), o "low-profile" que es usado en la mayoría de los discos
duros.
- 2,5 pulgadas: 69,85×9,5-15×100 mm (2,75×0,374-0,59×3,945 pulgadas).
Este factor de forma se introdujo por PrairieTek en 1988 y no se
corresponde con el tamaño de las lectoras de disquete. Este es
frecuentemente usado por los discos duros de los equipos móviles
(portátiles, reproductores de música, etc...) y en 2008 fue reemplazado
por unidades de 3,5 pulgadas de la clase multiplataforma. Hoy en día la
dominante de este factor de forma son las unidades para portátiles de
9,5 mm, pero las unidades de mayor capacidad tienen una altura de
12,5 mm.
- 1,8 pulgadas: 54×8×71 mm.
Este factor de forma se introdujo por Integral Peripherals en 1993 y se
involucró con ATA-7 LIF con las dimensiones indicadas y su uso se
incrementa en reproductores de audio digital y su subnotebook. La variante original posee de 2 GB a 5 GB y cabe en una ranura de expansión de tarjeta de ordenador personal. Son usados normalmente en iPods y discos duros basados en MP3.
- 1 pulgadas: 42,8×5×36,4 mm.
Este factor de forma se introdujo en 1999 por IBM y Microdrive, apto para los slots tipo 2 de compact flash, Samsung llama al mismo factor como 1,3 pulgadas.
- 0,85 pulgadas: 24×5×32 mm.
Toshiba anunció este factor de forma el 8 de enero de 2004 para usarse en móviles y aplicaciones similares, incluyendo SD/MMC slot compatible con disco duro optimizado para vídeo y almacenamiento para micromóviles de 4G. Toshiba actualmente vende versiones de 4 GB (MK4001MTD) y 8 GB (MK8003MTD) 5 y tienen el récord Guinness del disco duro más pequeño.
Los principales fabricantes suspendieron la investigación de nuevos
productos para 1 pulgada (1,3 pulgadas) y 0,85 pulgadas en 2007, debido a
la caída de precios de las
memorias flash, aunque
Samsung introdujo en el 2008 con el SpidPoint A1 otra unidad de 1,3 pulgadas.
El nombre de "pulgada" para los factores de forma normalmente no
identifica ningún producto actual (son especificadas en milímetros para
los factores de forma más recientes), pero estos indican el tamaño
relativo del disco, para interés de la continuidad histórica.
Características de un disco duro
Las características que se deben tener en cuenta en un disco duro son:
- Tiempo medio de acceso: tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
- Tiempo medio de búsqueda: tiempo medio que tarda la aguja en
situarse en la pista deseada; es la mitad del tiempo empleado por la
aguja en ir desde la pista más periférica hasta la más central del
disco.
- Tiempo de lectura/escritura: tiempo medio que tarda el disco
en leer o escribir nueva información: Depende de la cantidad de
información que se quiere leer o escribir, el tamaño de bloque, el
número de cabezales, el tiempo por vuelta y la cantidad de sectores por
pista.
- Latencia media: tiempo medio que tarda la aguja en situarse
en el sector deseado; es la mitad del tiempo empleado en una rotación
completa del disco.
- Velocidad de rotación: Es la velocidad a la que gira el disco
duro, más exactamente, la velocidad a la que giran el/los platos del
disco, que es donde se almacenan magnéticamente los datos. La regla es: a
mayor velocidad de rotación, más alta será la transferencia de datos,
pero también mayor será el ruido y mayor será el calor generado por el
disco duro. Se mide en número revoluciones por minuto ( RPM). No debe
comprarse un disco duro IDE de menos de 5400RPM (ya hay discos IDE de
7200RPM), a menos que te lo den a un muy buen precio, ni un disco SCSI
de menos de 7200RPM (los hay de 10.000RPM). Una velocidad de 5400RPM
permitirá una transferencia entre 10MB y 16MB por segundo con los datos
que están en la parte exterior del cilindro o plato, algo menos en el
interior.revoluciones por minuto de los platos. A mayor velocidad de
rotación, menor latencia media.
- Tasa de transferencia: velocidad a la que puede transferir la información a la computadora una vez que la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
Otras características son:
Conexionado
Tipos de conexión de datos
Las unidades de discos duros pueden tener distintos tipos de conexión o interfaces de datos con la
placa base. Cada unidad de disco rígido puede tener una de las siguientes opciones:
Cuando se conecta indirectamente con la placa base (por ejemplo: a través del puerto
USB) se denomina
disco duro portátil o externo.
IDE, ATA o PATA
La interfaz
ATA (
Advanced Technology Attachment) o
PATA (
Parallel ATA), originalmente conocido como IDE (
Integrated Device Electronics o
Integrated Drive Electronics), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (
Advanced Technology Attachment Packet Interface) o
unidades de discos ópticos como lectoras o grabadoras de CD o DVD.
Hasta el 2004, aproximadamente, fue el estándar principal por su versatilidad y asequibilidad.
Son planos, anchos y alargados.
SATA
Serial ATA o
SATA es el más novedoso de los estándares de conexión, utiliza un bus serie para la transmisión de datos.
Notablemente más rápido y eficiente que IDE.
Físicamente es mucho más pequeño y cómodo que los IDE, además de permitir
conexión en caliente (
hot plug).
Existen tres versiones:
- SATA 1 con velocidad de transferencia de hasta 150 MB/s (descatalogado),
- SATA 2 de hasta 300 MB/s, el más extendido en la actualidad;
- SATA 3 de hasta 600 MB/s el cual se está empezando a hacer hueco en el mercado.
SCSI
Las interfaces
Small Computer System Interface (
SCSI) son interfaces preparadas para discos duros de gran capacidad de almacenamiento y velocidad de rotación.
Se presentan bajo tres especificaciones:
- SCSI Estándar (Standard SCSI),
- SCSI Rápido (Fast SCSI) y
- SCSI Ancho-Rápido (Fast-Wide SCSI).
Su tiempo medio de acceso puede llegar a 7 milisegundos y su
velocidad de transmisión secuencial de información puede alcanzar
teóricamente los 5
Mbit/s
en los discos SCSI Estándares, los 10 Mbit/s en los discos SCSI Rápidos
y los 20 Mbit/s en los discos SCSI Anchos-Rápidos (SCSI-2).
Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (
daisy chain).
A diferencia de los discos IDE, pueden trabajar asincrónicamente con
relación al microprocesador, lo que posibilita una mayor velocidad de
transferencia.
SAS
Serial Attached SCSI (
SAS)
es la interfaz de transferencia de datos en serie, sucesor del SCSI
paralelo, aunque sigue utilizando comandos SCSI para interaccionar con
los dispositivos SAS. Aumenta la velocidad y permite la conexión y
desconexión en caliente. Una de las principales características es que
aumenta la velocidad de transferencia al aumentar el número de
dispositivos conectados, es decir, puede gestionar una tasa de
transferencia constante para cada dispositivo conectado, además de
terminar con la limitación de 16 dispositivos existente en SCSI, es por
ello que se vaticina que la tecnología SAS irá reemplazando a su
predecesora SCSI.
Además, el conector es el mismo que en la interfaz
SATA
y permite utilizar estos discos duros, para aplicaciones con menos
necesidad de velocidad, ahorrando costes. Por lo tanto, las unidades
SATA pueden ser utilizadas por controladoras SAS pero no a la inversa,
una controladora SATA no reconoce discos SAS.
Fuente de alimentación
Funcionamiento mecánico
Un disco duro suele tener:
- Platos, en donde se graban los datos.
- Cabezal de lectura/escritura.
- Motor, que hace girar los platos.
- Electroimán, que mueve el cabezal.
- Circuito electrónico de control, que incluye: interfaz con la computadora, memoria caché.
- Bolsita desecante (gel de sílice), para evitar la humedad.
- Caja, que ha de proteger de la suciedad, motivo por el cual suele traer algún filtro de aire.
Integridad
Debido a la distancia extremadamente pequeña entre los cabezales y la
superficie del disco, cualquier contaminación de los cabezales de
lectura/escritura o las fuentes puede dar lugar a un accidente en los
cabezales, un fallo del disco en el que el cabezal raya la superficie de
la fuente, a menudo moliendo la fina película magnética y causando la
pérdida de datos. Estos accidentes pueden ser causados por un fallo
electrónico, un repentino corte en el suministro eléctrico, golpes
físicos, el desgaste, la
corrosión o debido a que los cabezales o las fuentes sean de pobre fabricación.
El eje del sistema del disco duro depende de la presión del aire
dentro del recinto para sostener los cabezales y su correcta altura
mientras el disco gira. Un disco duro requiere un cierto rango de
presiones de aire para funcionar correctamente. La conexión al entorno
exterior y la presión se produce a través de un pequeño agujero en el
recinto (cerca de 0,5 mm de diámetro) normalmente con un filtro en su
interior (filtro de respiración, ver abajo). Si la presión del aire es
demasiado baja, entonces no hay suficiente impulso para el cabezal, que
se acerca demasiado al disco, y se da el riesgo de fallos y pérdidas de
datos. Son necesarios discos fabricados especialmente para operaciones
de gran altitud, sobre 3.000 m. Hay que tener en cuenta que los aviones
modernos tienen una cabina presurizada cuya presión interior equivale
normalmente a una altitud de 2.600 m como máximo. Por lo tanto los
discos duros ordinarios se pueden usar de manera segura en los vuelos.
Los discos modernos incluyen sensores de temperatura y se ajustan a las
condiciones del entorno. Los agujeros de ventilación se pueden ver en
todos los discos (normalmente tienen una pegatina a su lado que advierte
al usuario de no cubrir el agujero). El aire dentro del disco operativo
está en constante movimiento siendo barrido por la
fricción
del plato. Este aire pasa a través de un filtro de recirculación
interna para quitar cualquier contaminante que se hubiera quedado de su
fabricación, alguna partícula o componente químico que de alguna forma
hubiera entrado en el recinto, y cualquier partícula generada en una
operación normal. Una
humedad muy alta durante un periodo largo puede corroer los cabezales y los platos.
Para los cabezales resistentes al magnetismo grandes
(GMR)
en particular, un incidente minoritario debido a la contaminación (que
no se disipa la superficie magnética del disco) llega a dar lugar a un
sobrecalentamiento temporal en el cabezal, debido a la fricción con la
superficie del disco, y puede hacer que los datos no se puedan leer
durante un periodo corto de tiempo hasta que la temperatura del cabezal
se estabilice (también conocido como “aspereza térmica”, un problema que
en parte puede ser tratado con el filtro electrónico apropiado de la
señal de lectura).
Los componentes electrónicos del disco duro controlan el movimiento
del accionador y la rotación del disco, y realiza lecturas y escrituras
necesitadas por el controlador de disco. El
firmware
de los discos modernos es capaz de programar lecturas y escrituras de
forma eficiente en la superficie de los discos y de reasignar sectores
que hayan fallado.
Mantenimiento y cuidado
Los discos duros también necesitan cuidado, siga las siguientes
instrucciones para evitar la perdida de datos y evitar que el disco duro
quede inservible:
- No quitar la etiqueta ligeramente plateada que se encuentra a los
lados y/o algunas veces en la parte frontal, esto puede causar que entre
polvo y raye el disco, asimismo el polvo que pueda contener
electricidad puede mover los datos y causar daños.
- No tapar los agujeros pequeños, ya que son un filtro de aire y puede causar sobrecalentamiento.
- Realizar periódicamente copias de seguridad en discos DVD, Blu-ray
o en un disco duro externo de la información importante, eventos como
apagones o ataques de virus pueden dañar el disco duro o la información,
si ocurre un apagón desconectar el ordenador. Si se usa un servicio de alojamiento de archivos,
no debe ser la única opción ni se debe guardar ahí información delicada
o crítica, pues el servicio puede fallar, ser clausurado o atacado.
- Se recomienda crear al menos dos particiones: Una para el sistema
operativo y los programas y otra para los datos del usuario. De esta
forma se pueden facilitar la copia de seguridad y la restauración, al
posibilitar retroceder o reinstalar completamente el sistema operativo
sin perder los datos personales en el proceso.
- Optimizar (desfragmentar) el disco duro regularmente usando la
herramienta incluida en el sistema operativo o un programa de otro
fabricante para reducir el desgaste, facilitar la recuperación en caso
de un problema, y mantener una buena velocidad de respuesta. Se
recomienda una frecuencia de cuatro a seis meses dependiendo del uso.
- Descargar y usar un programa que lea los datos de los sensores del disco duro (S.M.A.R.T.),
para vigilar la condición del disco duro. Si indica que está en
peligro, copiar la información importante y reemplazar el disco duro lo
más pronto posible para evitar la pérdida de información.
- Evitar que el disco sufra golpes físicos, especialmente durante su
funcionamiento. Los circuitos, cabezales y discos pueden dañarse.
- Si el disco duro presenta problemas de confiabilidad, un
funcionamiento anormalmente lento o aparecen sin razón aparente archivos
dañados o ilegibles, analizarlo con un comprobador de disco. También se
recomienda realizar una comprobación de rutina cada cierta cantidad de
meses para detectar errores menores y corregirlos antes de que se
agraven.
Galería de imágenes
-
-
Unidad de disco duro de 2½" que está abierto, exponiendo su
funcionamiento interno. Disco duro Western Digital Scorpio Blue de 500
GB con conexiones SATA; es común en computadoras portátiles.
-
Interior de un disco duro; se aprecia la superficie de un
plato y el cabezal de lectura/escritura retraído, a la izquierda.
-
Interior de la unidad de disco duro; se aprecian dos
platos con sus respectivos cabezales.
-
-
Cabezal de disco duro IBM sobre el plato del disco.
-
Pila de cabezales de disco duro Western Digital (WD2500JS-00MHB0).
-
Un peine, 3 brazos, 6 cabezales, 3 platos.
-
Cabeza de disco duro sobre plato rayado. Rayaduras en el plato
producidas por golpes mientras la unidad estaba en funcionamiento.
-
Cables IDE, con 40 pines (izquierda) y 80 pines (derecha).
-
-
Comparación de cables ATA de 40 y 80 pines y SATA.
-
Zócalo con canal de indexación para
conector IDC (
Insulation-Displacement Connector, conector por desplazamiento del aislante).
-
Partes y conexiones de un disco rígido SATA.
-
Cable delgado SATA utilizado para conectar una delgada unidad óptica a
la interfaz SATA poder obtener de la placa base, y conector Molex para
fuente de alimentación.
Presente y futuro
Actualmente la nueva generación de discos duros utiliza la tecnología de
grabación perpendicular
(PMR), la cual permite mayor densidad de almacenamiento. También
existen discos llamados "Ecológicos" (GP – Green Power), los cuales
hacen un uso más eficiente de la energía.
Comparativa de Unidades de estado sólido y discos duros
Las
unidades de estado sólido
tienen el mismo uso que los discos duros y emplean las mismas
interfaces, pero no están formadas por discos mecánicos, sino por
memorias de
circuitos integrados para almacenar la información. El uso de esta clase de dispositivos anteriormente se limitaba a las
supercomputadoras, por su elevado precio, aunque hoy en día ya son muchísimo más asequibles para el mercado doméstico.
3
Una
unidad de estado sólido o
SSD (acrónimo en inglés de
solid-state drive) es un
dispositivo de almacenamiento de datos que puede estar construido con
memoria no volátil o con
memoria volátil. Las no volátiles son
unidades de estado sólido que como dispositivos electrónicos, están construidos en la actualidad con chips de
memoria flash.
No son discos, pero juegan el mismo papel a efectos prácticos aportando
más ventajas que inconvenientes tecnológicos. Por ello se está
empezando a vislumbrar en el mercado la posibilidad de que en el futuro
ese tipo de
unidades de estado sólido terminen sustituyendo al disco duro para implementar el manejo de
memorias no volátiles en el campo de la
ingeniería informática.
Esos soportes son muy rápidos ya que no tienen partes móviles y
consumen menos energía. Todos esto les hace muy fiables y físicamente
duraderos. Sin embargo su costo por GB es aún muy elevado respecto al
mismo coste de GB en un formato de tecnología de Disco Duro siendo un
índice muy importante cuando hablamos de las altas necesidades de
almacenamiento que hoy se miden en orden de Terabytes.
4
A pesar de ello la industria apuesta por este vía de solución tecnológica para el consumo doméstico
5 aunque se ha de considerar que estos sistemas han de ser integrados correctamente
6 tal y como se está realizando en el campo de la alta computación.
7
Unido a la reducción progresiva de costes quizás esa tecnología recorra
el camino de aplicarse como método general de archivo de datos
informáticos energéticamente respetuosos con el medio natural si
optimiza su función lógica dentro de los sistemas operativos actuales.
8
Los discos que no son discos
Las unidades de estado sólido han sido categorizadas repetidas veces
como "discos", cuando es totalmente incorrecto denominarlas así, puesto
que a diferencia de sus predecesores, sus datos no se almacenan sobre
superficies cilíndricas ni platos. Esta confusión conlleva habitualmente
a creer que
SSD significa
Solid State Disk, en vez de
Solid State Drive.
Unidades híbridas
Las unidades híbridas son aquellas que combinan las ventajas de las
unidades mecánicas convencionales con las de las unidades de estado
sólido. Consisten en acoplar un conjunto de unidades de memoria flash
dentro de la unidad mecánica, utilizando el área de estado sólido para
el almacenamiento dinámico de datos de uso frecuente (determinado por el
software de la unidad) y el área mecánica para el almacenamiento masivo
de datos. Con esto se logra un rendimiento cercano al de unidades de
estado sólido a un costo sustancialmente menor. En el mercado actual
(2012), Seagate ofrece su modelo "Momentus XT" con esta tecnología.
9
Fabricantes
Los recursos tecnológicos y el saber hacer requeridos para el desarrollo y la producción de discos modernos implica que desde
2007, más del 98 % de los discos duros del mundo son fabricados por un conjunto de grandes empresas:
Seagate (que ahora es propietaria de
Maxtor y
Quantum),
Western Digital (propietaria de
Hitachi, a la que a su vez fue propietaria de la antigua división de fabricación de discos de
IBM) y
Fujitsu, que sigue haciendo
discos portátiles y discos de servidores, pero dejó de hacer discos para ordenadores de escritorio en
2001, y el resto lo vendió a Western Digital.
Toshiba es uno de los principales fabricantes de discos duros para
portátiles de 2,5 pulgadas y 1,8 pulgadas.
TrekStor es un fabricante alemán que en 2009 tuvo problemas de insolvencia, pero que actualmente sigue en activo.
ExcelStor es un pequeño fabricante chino de discos duros.
Decenas de ex-fabricantes de discos duros han terminado con sus
empresas fusionadas o han cerrado sus divisiones de discos duros, a
medida que la capacidad de los dispositivos y la demanda de los
productos aumentó, los beneficios eran menores y el mercado sufrió un
significativa consolidación a finales de
los 80 y finales de
los 90. La primera víctima en el mercado de los
PC fue
Computer Memories Inc.; después de un incidente con 20 MB defectuosos en discos en
1985, la reputación de CMI nunca se recuperó, y salieron del mercado de los discos duros en
1987. Otro notable fracaso fue el de
MiniScribe, quien quebró en
1990:
después se descubrió que tenía en marcha un fraude e inflaba el número
de ventas durante varios años.
Otras muchas pequeñas compañías (como
Kalok,
Microscience, LaPine, Areal, Priam y PrairieTek) tampoco sobrevivieron a la expulsión, y habían desaparecido para
1993;
Micropolis fue capaz de aguantar hasta
1997, y
JTS, un recién llegado a escena, duró sólo unos años y desapareció hacia
1999, aunque después intentó fabricar discos duros en
India. Su vuelta a la fama se debió a la creación de un nuevo formato de tamaño de 3” para
portátiles.
Quantum e Integral también investigaron el formato de 3”, pero finalmente se dieron por vencidos.
Rodime fue también un importante fabricante durante la
década de los 80, pero dejó de hacer discos en la
década de los 90
en medio de la reestructuración y ahora se concentra en la tecnología
de la concesión de licencias; tienen varias patentes relacionadas con el
formato de 3,5“.
Firma:
Jerson A. Martínez M.